Calculus III (SM221, SM221S, SM221Y)

FINAL EXAM

You should have a calculator. Write your name, alpha number, and section on both the blue book(s) and the bubble sheet. Bubble in your alpha number in the left-most columns on the bubble sheet.

Part One. Multiple choice (50%). The first 20 problems are multiple choice. Fill in the letter of the best answer on the bubble sheet. There is no penalty for a wrong answer. YOU MUST ALSO WRITE THE ANSWER AND SHOW ALL YOUR WORK IN YOUR BLUE BOOK.

- 1. The range of the function given by $g(x,y) = \sqrt{1-x^2-y^2}$ is
- c. the interval [0, 1] b. the interval $[0, \infty)$ a. all real numbers
- d. the interval $(-\infty, 1]$ e. all pairs (x, y) with $x^2 + y^2 \le 1$.
 - 2. The point with cylindrical coordinates $(r, \theta, z) = (2, \pi/3, 5)$ is at what distance from the origin?
- e. √29 c. 3 d. 5 b. 2
 - Which best describes the surface given in spherical coordinates by φ = π/3?
- b. a single cone c. a cylinder a. a sphere
- e. part of a vertical plane d. a full vertical plane
 - 4. The Maple command spacecurve([sin(t),t,cos(t)],t=0..4*Pi); will give which result below? (Axes included, properly labeled, and output rotated to more standard position)

- If r'(t) = (e^t, cos(t), t²) and r(0) = (2, 3, -1), then r(t) equals which of the following?
- a. $\langle e^t, -\sin(t), 2t \rangle$
- b. $\langle e^t, \sin(t), t^3/3 \rangle$ c. $\langle 1 + e^t, 3 + \sin(t), -1 + t^3/3 \rangle$
- d. $\langle e^t + 2, -\sin(t) + 3, 2t \rangle$
- e. $(1 + e^t, 2 + \cos(t), -1 + t^2)$
- The graph of the cylinder with y-axis for an axis can be drawn as shown with which of the following Maple commands? (Rotated to standard position)

- b. plot3d([cos(t),y,sin(t)], y=0..1, t=0..2*Pi);
- c. plot3d([cos(t),sin(t),z], z=0..1, t=0..2*Pi);
- d. plot3d([t,cos(t),sin(t)], t=0..2*Pi);
- e. plot3d([cos(t),t,sin(t)], t=0..2*Pi);

Suppose wave heights, f(v,t), as a function of wind speed v and duration t are given by

the following chart.

$v \setminus t$	15	10	15
10	2	3	3
20	8	8	9
30	12	14	15

Which of the following is the best estimate for $f_v(20, 10)$?

a. 0.05

b. 0.55 · c. 1

8. Suppose $z = xy^2 + \ln(x)$, $\frac{dx}{dt} = e^{(t^2)}$, $\frac{dy}{dt} = \sqrt{t+4}$, and when t = 0: x = 3, y = 5. Which of the following is closest to $\frac{dz}{dt}$ when t = 0?

b. 81

c. 83

d. 85

e. 87

The Marines are on a small hill with the given contour map describing the height function h(x, y). For $u = \langle 0.6, -0.8 \rangle$, the directional derivative $(D_uh)(1,-1)$ is closest to:

a. -2.5 b. -1 c. 0 d. 1 e. 2.5

10. A pile of sand within a 20 ft by 40 ft walled rectangle has depths in feet given by the accompanying chart at various locations. Using the midpoint rule with 4 subrectangles (dividing by 2 in each of the x and y directions) the approximation to the volume of sand is: b. 6000ft³ c. 9000ft³ d. 12000ft³ e. 15000ft³

x\y	0	10	20	30	40
0	2	6	3	5	4
5	1	17	6	8	5
10	-3	5	4	6	2
15	5	6	7	9	3
20	1	4	3	10	6

11. If $\int_0^2 f(x,y) dy = x - 2x^2$ and $R = [0,1] \times [0,2]$ (the rectangle with $0 \le x \le 1$ and $0 \le y \le 2$), then $\iint_R f(x, y) dA =$

a. -3 b. -1/6 c. 0

d. 1/6 e. 3

12. Which iterated integral equals $\iint_D f(x, y) dA$ where D is as drawn?

a. $\int_{\pi/4}^{\pi} \int_{1}^{2} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$

b. $\int_{\pi/4}^{\pi} \int_{0}^{2} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$ d. $\int_{0}^{\pi/4} \int_{1}^{2} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$

c. $\int_0^{\pi} \int_1^2 f(r\cos(\theta), r\sin(\theta)) r dr d\theta$

e. $\int_{\pi/4}^{\pi} \int_{-2}^{-1} f(r \cos(\theta), r \sin(\theta)) r dr d\theta$

13. The surface area of the part of the graph of f(x,y) over the region R in the xy-plane can be found by evaluating $\iint_R g(x,y) dA$ where g(x,y) is given by

a. $\sqrt{1+f_x(x,y)^2+f_y(x,y)^2}$ b. $\sqrt{1+f_x(x,y)+f_y(x,y)}$ c. $1+f_x(x,y)+f_y(x,y)$

d. $1 + f_x(x, y)^2 + f_y(x, y)^2$ e. f(x, y)

14. $\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{r^{2}} r \, dz \, dr \, d\theta$ gives the volume under which surface drawn below (each has height

 Which of the following will give the mass of the 1/8 ball of radius 1 as drawn, assuming density equals distance from the origin?

- a. $\int_0^{\pi/2} \int_{\pi/2}^{\pi} \int_0^1 \rho^3 \sin(\phi) \, d\rho \, d\theta \, d\phi$
- c. $\int_{\pi/2}^{\pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \sin(\phi) d\rho d\theta d\phi$
- e. $\int_{0}^{\pi/4} \int_{\pi/4}^{\pi/2} \int_{0}^{1} \rho^{3} \sin(\phi) d\rho d\theta d\phi$

- b. $\int_{0}^{\pi} \int_{\pi/2}^{\pi} \int_{0}^{1} \rho^{3} \sin(\phi) d\rho d\theta d\phi$
- d. $\int_0^{\pi} \int_0^{\pi} \int_0^1 \rho^3 \sin(\phi) d\rho d\theta d\phi$

16. Which vector field below is plotted? (vectors are all scaled equally)

- (y,x)
- b. $\langle y, y \rangle$ c. $\langle x, x \rangle$ e. $\langle -x, -y \rangle$
- d. (x, y)
- 17. Evaluate $\int_C x \, dy$ where C is given by x = 3t, $y = t^2$, $0 \le t \le 3$.
- a. 0
- b. 9/2 c. 27/2
- d. 54
- e. 144

 Suppose f is a potential function for F (so that $\nabla f = \mathbf{F}$). This table gives certain values of f(x,y). Use it to find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is parameterized by x = 2 - 2t, $y = t^3$, $0 \le t \le 1$.

xy	0	1	2
0	3	4	5
1	5	8	11
2	9	16	20

- a. -17
- b. −5
- c. 0
- d. 4
- e. 8

 By Green's Theorem, which of the following will be the area enclosed by a positively oriented smooth simple closed curve C?

- a. $\oint_C y \, dx + x \, dy$ b. $\oint_C 2y \, dx + x \, dy$ c. $\oint_C y \, dx + 2x \, dy$ d. $\oint_C 2y \, dx + 2x \, dy$ e. $\oint_C x \, dx + y \, dy$

20. If F(x, y, z) has a constant divergence 3 (div F = 3) over the solid cube with vertices at (±1,±1,±1), then for C the boundary of that cube, ∫∫C F · dS equals:

- b. 5
- c. 15
- d. 21

Part Two. Longer Answers (50%). The remaining 10 problems are not multiple choice. Again, show all of your work and put your answers in your blue book(s).

- 21. Sketch the level surfaces of $f(x, y, z) = x 4z^2 9y^2$ for values of k = -1, 0, 1.
- 22. Consider the curve with parametric equations $x = 2\sin(3t)$, y = 5t, $z = 2\cos(3t)$.
 - a. Find the length of the curve from t=0 to $t=\pi$.
 - b. Find parametric equations for the tangent line to the curve at the point $(-2, 5\pi/2, 0)$.
- 23. Does a football accurately kicked at a 60° angle with the horizontal at an initial speed of 41 ft/sec clear a 10 ft high crossbar 40 ft away? Find the position r(t) at any time t and show all work.
- 24. Find the function L(x,y) that is the linear approximation (also called the tangent plane approximation) to g(x,y) = sin(x) + e^y at (0,1) and use it to give an approximation of g(0:1,1.2) showing all work.
- 25. For $f(x, y) = 2x^2y 3y^2$ and P = (1, 2) find
 - a. The maximum rate of change of f at P and the direction in which it occurs.
 - b. The directional derivative of f at P in the direction of i+2j.
- Consider the doubly iterated integral given in Maple by int(int(exp(x^2),x=2*y..4),y=0..2);

Draw the region of integration and give the Maple command to evaluate the integral over the same region but with the order of integration reversed.

- 27. Define the curl by giving a formula for it for all functions F(x, y, z). Use this definition to show that for vector valued functions of the form F(x, y, z) = \langle f(x), g(y), h(z) \rangle we have curl F = 0.
- Evaluate the surface integral ∫∫_S(x²+y²) dS where S is the helicoid with vector equation r(u, v) = u cos(v)i + u sin(v)j + vk, 0 ≤ u ≤ 1, 0 ≤ v ≤ π.
- 29. Use Stokes' Theorem to evaluate ∫_C F · dr where F(x, y, z) = xi + x²j + yzk and C is the curve of intersection (traversed counterclockwise when viewed from above) of the plane and cylinder given by 2x + z = 3 and x² + y² = 4.
- 30. Use the Divergence Theorem to calculate the surface integral ∫∫_S F · dS where F(x, y, z) = 3xyi + x²zj z²k and S is the surface of the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1).